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A Two-Speed, Radix-4, Serial–Parallel Multiplier
Duncan J. M. Moss , David Boland, and Philip H. W. Leong

Abstract— In this paper, we present a two-speed, radix-4,
serial-parallel multiplier for accelerating applications such as dig-
ital filters, artificial neural networks, and other machine learning
algorithms. Our multiplier is a variant of the serial–parallel (SP)
modified radix-4 Booth multiplier that adds only the nonzero
Booth encodings and skips over the zero operations, making the
latency dependent on the multiplier value. Two subcircuits with
different critical paths are utilized so that throughput and latency
are improved for a subset of multiplier values. The multiplier is
evaluated on an Intel Cyclone V field-programmable gate array
against standard parallel–parallel and SP multipliers across four
different process–voltage–temperature corners. We show that
for bit widths of 32 and 64, our optimizations can result in
a 1.42×–3.36× improvement over the standard parallel Booth
multiplier in terms of area–time depending on the input set.

Index Terms— Booth, field-programmable gate array (FPGA),
machine learning (ML), multiplier, neural networks.

I. INTRODUCTION

MULTIPLICATION is arguably the most important prim-
itive for digital signal processing (DSP) and machine

learning (ML) applications, dictating the area, delay, and
overall performance of parallel implementations. The work
on the optimization of multiplication circuits has been
extensive [1], [2], however, the modified Booth algorithm at
higher radixes in combination with Wallace or Dadda tree
has generally been accepted as the highest performing imple-
mentation for general problems [2]–[4]. In digital circuits,
multiplication is generally performed in one of three ways:
1) parallel–parallel; 2) serial–parallel (SP); and 3) serial–serial.
Using the modified Booth algorithm [5], [6], we explore an
SP two-speed multiplier (TSM) that conditionally adds the
nonzero encoded parts of the multiplication and skips over
the zero encoded sections.

In DSP and ML implementations, reduced precision rep-
resentations are often used to improve the performance of a
design, striving for the smallest possible bit width to achieve
a desired computational accuracy [7]. Precision is usually
fixed at design time, and hence, any changes in the require-
ments necessitate that further modification involves redesign
of the implementation. In cases where a smaller bit width
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would be sufficient, the design runs at a lower efficiency
since unnecessary computation is undertaken. To mitigate this,
mixed-precision algorithms attempt to use a lower bit
width some portion of time, and a large bit width when
necessary [8]–[10]. These are normally implemented with two
datapaths operating at different precisions.

This paper introduces a dynamic control structure to remove
parts of the computation completely during runtime. This is
done using a modified serial Booth multiplier, which skips
over encoded all-zero or all-one computations, independent
of location. The multiplier takes all bits of both operands in
parallel and is designed to be a primitive block which is easily
incorporated into existing DSPs, CPUs, and GPUs. For certain
input sets, the multiplier achieves considerable improvements
in computational performance. A key element of the multiplier
is that sparsity within the input set and the internal binary rep-
resentation both lead to performance improvements. The mul-
tiplier was tested using field-programmable gate array (FPGA)
technology, accounting for four different process–voltage–
temperature (PVT) corners. The main contributions of this
paper are as follows.

1) The first serial modified Booth multiplier where the
datapath is divided into two subcircuits, each operating
with a different critical path.

2) Demonstrations of how this multiplier takes advan-
tage of particular bit-patterns to perform less work;
this results in reduced latency, increased throughput,
and superior area–time performance than conventional
multipliers.

3) A model for estimating the performance of the multiplier
and evaluation of the utility of the proposed multiplier
via an FPGA implementation.

This paper is supplemented by an open source repository
supporting reproducible research. The implementation, tim-
ing constraints, and all scripts to generate the results are
made available at: http://github.com/djmmoss/twospeedmult.
The rest of this paper is organized as follows. Section II
covers the necessary background, laying out the fundamentals
of multiplication and examining related work in low-level
optimization, and reduced precision primitives for deep learn-
ing. Section III and Section IV focus on the modified serial
Booth multiplier and the two-speed optimization, respectively.
Section V covers the results, and finally, the contributions are
summarized in Section VI.

II. MULTIPLICATION

Multiplication is a critical primitive that often dictates
the performance of large DSP applications. Sze et al. [11]
noted that the majority of hardware optimizations for ML is
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Fig. 1. Unsigned two’s complement multiplication p = x × y, where x is
the multiplicand, y is the multiplier, and X and Y are their respective n = 4
digit vectors in the radix-2 conventional number system.

focused on reducing the cost of the multiply and accumulate
operations. Hence, careful construction of the compute unit,
with a focus on multiplication, leads to the largest performance
impact. This section presents an algorithm for the multiplica-
tion of unsigned integers followed by its extension to signed
integers [2], [3].

Let x and y be the multiplicand and the multiplier, repre-
sented by n digit vectors X and Y in a radix-r conventional
number system. The multiplication operation produces p =
x × y, where p is represented by the 2n digit vector P .
Multiplication is described as

p = x
n−1∑

i=0

Yir
i =

n−1∑

i=0

r i xYi . (1)

Equation (1) can be implemented by first computing the
n xr i Yi terms followed by the summation. Computation of
the i th term involves a i -position left shift of X and the
multiplication of a single radix-r digit Yi . This single radix-r
digit multiplication is a scaling factor of the i th digit in the
digit vector set. In the case of radix-2, this is either 0 or 1.
Performing the computation, in this manner, lends itself to a
combinational or parallel multiplication unit.

The same computation can be expressed recursively

p[0] = 0

p[ j + 1] = r−1(p[ j ] + rnxY j ) j = 0, 1, . . . , n − 1

p = p[n]. (2)

Expanding this recurrence results in product p[n] = x × y
in n steps. Each time step j consists of a multiplication of x
by a radix-r digit, Y j , similar to (1). This is followed by a digit
left shift and accumulated with the result from the previous
time step p[ j ]. The recurrence is finished with a one digit
right shift. It is expressed, in this manner, to ensure that the
multiplication can proceed from the least significant digit of
the multiplier y, while retaining the same position with respect
to the multiplicand x . An example is given in Fig. 1.

Equation (1) can be extended to the signed, two’s comple-
ment system through the incorporation of a sign bit for the

multiplier y

y = −Yn−12n−1 +
n−2∑

0

Yi 2i (3)

and substituting it into (1). The new expression is given by

p =
n−2∑

i=0

xYir
i − xYn−12n−1. (4)

The negation of x (−x) is performed by flipping all of the
bits [bf (1101) = 0010] then adding a single bit in the least
significant position (0010 + 1 = 0011).

A. Multiplier Optimizations

There has been a rich history of ingenious optimiza-
tions for the efficient hardware implementation of multipli-
cation, with the multitude of conventional techniques being
reviewed in computer arithmetic textbooks [2], [3]. In partic-
ular, the signed Booth algorithm was proposed in [1], and
the commonly used modified Booth algorithm, presented in
Section II, in 1961 [5], [6].

Recent work has focused on static reordering of the
computation or new layouts for the multiplication hardware
on FPGAs. Rashidi et al. [12] proposed a low-power and low-
cost shift/add multiplexer-based signed Booth multiplier for a
Xilinx Spartan-3 FPGA. The authors used low-power struc-
tures, mainly a multiplexer-based Booth encoder with signed
shifter blocks and a multiplexer-based Manchester adder.
At 50 MHz, the design consumes 58 mW with a total latency
of 160 nsec. Devi et al. [13] focused on a fully combinatorial
multiplier design which used custom carry select adders to
reduce power consumption by 3.82% and 30% compared to
standard ripple carry and carry select adders, respectively. Two
contributions were made: a multistage partitioning approach
which reduces the overall gate count, and a splitting clock
method to reduce the power of the final accumulation. Our
work is orthogonal to both works as the same optimizations
and structures could be used with our TSM.

Kalivas et al. [14] described a new bit serial–serial multi-
plier capable of operating at 100% efficiency. During standard
bit serial–serial computation, zero bits are added into the
input pipeline between successive inputs words to allow time
for the most-significant bits of the product to be produced.
Kalivas et al. [14] removed these bits by adding an additional
shift register connected to a secondary output which allows for
the most-significant bits of the previous product to be produced
while the least significant bits (LSBs) of the current product
are produced. This paper differs from our own in two impor-
tant areas; first, our multiplier is an SP multiplier using the
radix-4 Booth algorithm. Second, our multiplier can operate
at >100% efficiency since computation is effectively skipped,
completing the multiplication in a faster than expected time.

Other work such as [15] has focused on specialized mul-
tiplication structures for the Galois field multiplication. Ten
different multiplier alternatives are explored and compared to
a reference architecture. The different strategies for combining
integer and the Galois field multiplication show area savings
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up to 20% with only a marginal increase in delay and an
increase in power consumption of 25%.

Furthermore, Rashidi [16] proposed a modified retiming
serial multiplier for finite impulse response (FIR) digital filters
based on ring topologies. The work involved additional logic
which allowed for modification of the scheduling of the FIR
filter computation, allowing the number of compute cycles to
be reduced from 32 to 24. To further improve the performance
of the FIR filter computation, the author proposed a high-speed
logarithmic carry look ahead adder to work in combination
with a carry save adder.

While the TSM is suited for ML and applications with high
degrees of sparsity, it differs from the previous research in that
the multiplier performs standard signed multiplication and can
be used in any application. Our contribution is a new control
structure for performing multiplication that dynamically avoids
unnecessary computation.

B. Previous Work on Reduced Precision Multiplication
for Neural Networks

The most comparable work to this multiplier is the parallel–
serial, or shift-add, multiplier. As described in (2), the prod-
uct p is iteratively calculated by examining individual bits of
X each cycle and accumulating a scaled Y [1].

Recent work in a bit and digit serial multiplication for
FPGAs has focused on online arithmetic [17] and effi-
cient mapping of the algorithms to the FPGA architecture.
Shi et al. [18] analyzed the effect of overclocking radix-2
online arithmetic implementations and quantified the error
introduced by timing violations. They found a significant
reduction in error for DSP-based applications compared with
conventional arithmetic approaches. Zhao et al. [19] presented
a method for achieving arbitrary precision operations utilizing
the on-chip block RAMs to store intermediate values.

In the domain of neural networks, Judd et al. [7] presented
a bit-serial approach for reduced precision computation. They
showed a 1.3×–4.5× performance improvement over classical
approaches as their arithmetic units only perform the necessary
computation for the particular bit width.

III. RADIX-4 BOOTH MULTIPLICATION

This section reviews the radix-4 Booth algorithm [1],
an extension to the parallel–serial multiplier. This computes
x × y where x and y are the n bit two’s complement numbers
(the multiplicand and multiplier respectively); producing a 2n
two’s complement value in the product p. The multiplication
algorithm considers multiple digits of Y at a time and is
computed in N partitions where

N =
⌊

n + 2

2

⌋
. (5)

An equation describing the computation is given by

p = (Y1 + Y0)x +
N∑

i=1

22i−1(Y2i+1 + Y2i − 2Y2i−1)x . (6)

Following the notation in Section II, Y denotes the length-N
digit vector of the multiplier y. The radix-4 Booth algorithm

TABLE I

BOOTH ENCODING

Algorithm 1 x, y Are n Bit Two’s Complement Numbers,
p Denotes the 2n Two’s Complement Result, and the Shift
Right Arithmetic (sra) Function. y Is Assigned to the n LSBs
of p, Hence, the Encoding, E , Can Be Calculated Directly
From P

considers three digits of the multiplier Y at a time to create
an encoding e given by

ei = Y2i+1 + Y2i − 2Y2i−1 (7)

where i denotes the i th digit. As illustrated in Table I, apart
from Yi+2Yi+1Yi = 000 and Yi+2Yi+1Yi = 111 which results
in a 0, the multiplicand is scaled by either 1, 2, −2, or −1
depending on the encoding.

This encoding ei is used to calculate a partial product
Partial Producti by calculating

Partial Producti = ei x = (Y2i+1 + Y2i − 2Y2i−1)x . (8)

This Partial Product is aligned using a left shift (22i−1) and
the summation is performed to calculate the final result p.
Since the Y−1 digit is nonexistent, the 0th partial product
Partial Product0 = (Y1 + Y0)x . A serial (sequential) version
of the multiplication is performed by computing each partial
product in N cycles

p[0] = 2n−2(Y1 + Y0)x

p[ j + 1] = 2−2(p[ j ] + 2n(Y2 j+1 + Y2 j − 2Y2 j−1)x),

j = 1, . . . , N − 1 (9)

p = p[N].
To better explain the two-speed optimization presented in

Section IV, (9) is represented as an algorithm in Algorithm 1
and illustrated in Fig. 2. Two optimizations are performed
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Fig. 2. n bit serial multiplier. There are five key components to the standard
radix-4 serial Booth multiplier: the shifter, encoder, partial product generator,
control, and adder. As the partial results are generated in the adder, they are
accumulated in the n most-significant bits of the product register.

Fig. 3. n bit TSM. This contains an added control circuit for skipping and
operating with two different delay paths.

to allow for better hardware utilization. First, the product
p is assigned the multiplier y (p = y), this removes the
need to store y in a separate register and utilizes the n
LSBs of the p register. Consequently, as the product p is
shifted right ( p = sra(p, 2)), the next encoding ei can be
calculated from the three LSBs of p. The second optimization
removes the realignment left shift of the partial product (2n) by
accumulating the Partial Product to the n most-significant
bits of the product p (P[2∗ B −1 : B]+ = Partial Product).

IV. TWO-SPEED MULTIPLIER

This section presents the TSM which is an extension to
the serial Booth multiplication algorithm and implementation.
The key change is to partition the circuit into two paths; each
having critical paths, τ and K τ , respectively (see Fig. 3). The
multiplier is clocked at a frequency of (1/τ), where the K τ
region is a fully combinatorial circuit with a delay of K τ . K is
the ratio of the delays between the two subcircuits. K̄ = �#� is
the number of cycles needed for the addition to be completed
before storing the result in the product register; used in the
hardware implementation of the multiplier.

As illustrated in Algorithm 2, before performing the addi-
tion, the encoding, e (the three LSBs of the product) is
examined and a decision is made between two cases: 1) the
encoding and Partial Product are zero and 0x , respectively,

Algorithm 2 When E = 0, Zero Encodings Are Skipped and
Only the Right Shift Arithmetic Function Is Performed

and 2) the encoding is nonzero. These two cases can be
distinguished by generating

skip =
{

1, if P[2 : 0] ∈ {000, 111}
0, otherwise.

(10)

When skip = 1 only the right shift and cycle counter
accumulate need to be performed, with a critical path of τ .
In the case of a nonzero encoding (skip = 0), the circuit is
clocked K̄ times at τ . This ensures sufficient propagation time
within the adder and partial product generator, allowing the
product register to honor its timing constraints. Hence, the total
time T taken by the multiplier can be expressed as (11), where
N is defined by (5), and O is the number of nonzero encodings
in the multiplier’s Y digit vector

T (O) = (N − O)τ + O K̄ τ. (11)

The time taken to perform the multiplication is dependent
on the encoding of the bits within the multiplier y. The upper
and lower bound for the total execution time occurs when
O = N and O = 0, respectively. From (11), the max and min
are

Nτ ≤ T ≤ N K̄ τ. (12)

The input that results in the minimum execution time is
when y = 0. In this case, all bits within the multiplier are 0,
and every three LSB encoding results in a 0x scaling and
O = 0. There are a few input combinations that result in
the worst case, O = N . One case would be a number of
alternating 0 and 1, i.e., 1010101..10101..10101. In this case,
each encoding results in a nonzero Partial Product .

A. Control
As shown in Fig. 4(a) and (b), the control circuit consists

mainly of: one log2(N) accumulator, one log2(K̄ ) accumu-
lator, three gates to identify the nonzero encodings, and a
comparator. Counter2 is responsible for counting the num-
ber of cycles needed for the addition without violating any
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Fig. 4. Two counters are used to determine (a) when the multiplication
is finished and (b) when the result of the K τ circuit has been propagated.
(a) Controller flowchart. (b) Control circuit.

Fig. 5. Control example: nonzero encodings result in an “add” action taking
K̄ τ time, whereas zero encodings allow the “skip” action, taking τ time. For
the first encoding, only the two LSBs are considered with a prepended 0 as
described in Section III.

timing constraints, i.e., K̄ . When the encoding is nonzero,
Counter2 is incremented. Counter1 accumulates the num-
ber of encodings that have been processed. As shown in
Section III, the number of cycles needed to complete a single
multiplication is N , therefore, the accumulator and Counter1
needs to be log2(N) bits wide. Counter1 is incremented when
the comparator condition has been met, Counter2 = K̄ , or a
zero encoding is encountered. When Counter1 increments,
the signal is given to perform the right shift.

The control needs to distinguish between the zero and
nonzero encodings. It contains a three-gate circuit, perform-
ing (10); taking in the three LSBs of the multiplier y. Two
cases of zero encoding exist. The three gates are designed to
identify these nonzero encodings; an inverter is connected to
the accumulator of Counter2, incrementing, in these cases.

B. Example
Fig. 5 provides an example of the control operating in the

multiplier and the time taken to perform the multiplication.
Each cycle, the three LSBs of the multiplier y are examined
and an action is generated based on their encoding. Since 000
results in a 0x partial product, the first action is a “skip” and
only the right shift is performed in τ time. The next three-
bit encoding, 010, is examined and results in a 1x partial
product. This generates the “add” action in which Counter2
is accumulated to K̄ and the product register is held constant.
After K̄ τ time, the value stored in the register has had enough
time to propagate through the adder and the result is latched
in the product register without causing timing violations. The
multiplier continues operating in this fashion until all bits of
y have been processed and the final result produced. In Fig. 5,
the total time is 3τ + 3K̄τ since there are three “skips” and
three “adds.”

C. Set Analysis and Average Delay
Given an input set D of length l and a function f (y) [given

by (13)] that calculates the number of nonzero encodings for

Algorithm 3 Probability of Encountering a Particular
Encoding Given an Input Data Set, � Denotes Elementwise
Division

Fig. 6. p(i) 32-bit distribution: the distribution of the frequency of particular
nonzero encoded numbers for the Gaussian and uniform distributions.

a given multiplier y, the probability distribution p of encoun-
tering a particular encoding can be calculated by Algorithm 3

f (y) = ¬(Y1 ⊕ Y0)

+
N∑

i=1

(¬(Y2i+1 ⊕ Y2i ) ∧ ¬(Y2i ⊕ Y2i−1)) (13)

where ¬, ⊕, and ∧ are the logical “NOT,” “XOR,” and “AND”
symbols, respectively.

Fig. 6 shows the Gaussian and uniform encoding probability
distribution for 32 bits. There are significantly less numbers in
the lower, nonzero encoding region compared with the higher,
nonzero encoding region, resulting in increased computation
time. However, as discussed in Section V, for other work-
loads, the distributions can shift and change depending on the
problem and optimization techniques used.

Using the probability p, the average delay of the multiplier
can be calculated using the following equation:

T = 1

N

N∑

i=0

p(i)T (i) (14)

where T (i) is calculated using (11) and p(i) denotes the prob-
ability of encountering an encoded number with i nonzeros.

D. Timing
During standard timing analysis, the K τ path would cause

a timing violation for the circuit operating at frequency (1/τ).
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TABLE II

MULTIPLIER IMPLEMENTATION RESULTS

There are two ways to address this issue. The first involves a
standard “place and route” of each individual multiplier as it
is instantiated in the design. An additional timing constraint is
included to address the otherwise violated K τ path, allowing
timing driven synthesis and placement to achieve the best
possible layout. The second option is to create a reference
post—“place and route” block—that is used whenever the
multiplier is instantiated. This ensures each multiplier has
the same performance and is placed in exactly the same
configuration.

There are downsides to each option. The first option gives
the tools freedom to place the blocks anywhere, however,
the performance of individual instantiations may differ if the
K τ and τ sections cannot be placed at the same clock rate.
For the second option, placing a reference block requires the
availability of free resources in the layout specified. While this
ensures high performance, placing the reference block may
become increasingly difficult as the design becomes congested.

V. RESULTS

This section presents the implementation results of
the TSM. The multiplier is compared against the standard
64-, 32-, and 16-bit versions of parallel–parallel and SP
multipliers. For all configurations tested up to 64 bits, the
K scaling factor in the K τ subcircuit of Fig. 3 was always
less than 2. This allows the comparison of K̄ with a counter
in Fig. 4(b) to be simplified to a bit-flip operation.

A. Implementation Results
The area and delay of different TSM instantiations are given

in Table II for an Intel Cyclone V 5CSEMA5U23C6 FPGA,
with the results obtained using the Intel Quartus 17.0 software
suite. During place and route, the software performs static tim-
ing analysis across four different PVT corners, keeping voltage
static. Specifically: 1) fast 1100mv 0C; 2) fast 1100mv 85C;
3) slow 1100mv 0C; and 4) slow 1100mv 85C. The TSM
was “placed and routed” using the timing constraint-based
methodology and all frequencies reported for each multiplier

represent the upper limit for each one considered as a stand-
alone module. Unless otherwise specified, T ime is considered
to be the result latency, and Area, the number of logic
elements. The TSMs were evaluated using the Gaussian and
uniform sets, as they are important sets in ML applications,
as well as two neural network weight sets.

All sets were generated in single-precision floating-point
and converted to fixed-point numbers. The integer length was
determined by taking the maximum value of the set and
allocating sufficient bits to represent it fully, hence, saturation
did not need to be performed. The number of fractional bits is
the remaining bits after the integer portion has been accounted
for. The Gaussian set was generated with a mean of zero and
standard deviation of 0.1. For the Gaussian-8 set, the numbers
were scaled such that they are represented in 8 bits. The
uniform set was generated by selecting numbers between
−1 and 1.

The neural network weight sets are from two convolutional
neural networks, AlexNet [20] and a 75% sparse variant of
LeNet [21], LetNet75, trained using the methodology pre-
sented by Han et al. [22]. The parallel (combinatorial) and par-
allel (pipelined) multipliers are radix-4 Booth multipliers taken
from an optimized FPGA library provided by the vendor and
are designed for high performance [23]. Since the performance
of a parallel (pipelined) multiplier is a function of its pipeline
depth, the reported values are the best results from numerous
configurations to ensure a fair comparison. The Booth SP
multiplier also uses the radix-4 Booth algorithm, illustrated
in Algorithm 1 whereas the TSM implements Algorithm 2.

Fig. 7 presents the improvements in Area × Time for
the four different multipliers, with the parallel (combinator-
ial) illustrating baseline performance for each configuration.
Area × Time is an important metric for understanding archi-
tecture design attributes and the magnitude of possible trade-
offs between area and speed [24]. The fixed cycle times of
the Booth SP, parallel (combinatorial) and parallel (pipelined)
multipliers result in the same performance regardless of the
input set. However, the TSM is designed to take advantage
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Fig. 7. Improvement in Area × Time for four different multiplier configu-
rations, respectively. Five different sets are presented for the TSM.

Fig. 8. p(i) 32-bit set: the probability that y will be a particular encoding.

of the input set and outperforms all other multipliers in
the 32- and 64-bit configuration. In the 16-bit configuration,
the TSM exhibited similar performance to the baseline.

The highest performing set is the 64-bit Gaussian-8; show-
ing a speedup of 3.64×. For the Gaussian and uniform sets,
the 64-bit configuration provides a 2.42× and 2.45× improve-
ment, respectively. At 32 and 16 bits, the TSM’s improvements
range from 1.47× to 1.52× and 0.97× to 1.02×, respectively.
The Gaussian-8 set illustrates that inefficiencies introduced by
using a lower bit representation are alleviated by the TSM;
the majority of the most-significant bits are either all 0s in the
positive case, or all 1s in the negative case, allowing multiple
consecutive “skips.”

Fig. 8 shows the probability distributions of the five prob-
lems tested at 32 bits. It illustrates the differences between the

Gaussian, uniform, AlexNet, Gaussian-8, and LeNet75 sets
and why particular sets perform better than others. For
Gaussian-8, the majority of the encoding is in the 2–4 range,
resulting in a significant number of “skips” for each input.
While the nonzero numbers in the LeNet75 set contain high
encoding numbers, the set also contains 71% zeros, therefore,
the majority of the computations are “skips.”

B. Multiplier Comparison
Table III compares different multiplier designs in terms

of six important factors: Area, Time, Power, Area × Time,
Time × Power, and Area × Time × Power, with the spe-
cific application often dictating which is most appropriate.
Typically, tradeoffs are analyzed and the variant with the
highest performance is chosen. For the area, either the Booth
SP or TSM is the best choices as they have the smallest
footprint. Alternately, when both area and speed are factors,
the TSM outperforms the Booth SP multiplier as illustrated in
Table III and Fig. 7. If the area is not a concern, the parallel
(combinatorial) multiplier may be preferred. When taking
power into account, the parallel (combinatorial) multiplier
outperforms the parallel (pipelined) multiplier.

As highlighted in Table III, in terms of Area × Time ×
Power, the Booth SP multiplier offers the highest performance
and is 1.9× better on this metric than the parallel (combina-
torial) multiplier for a bit width of 64. However, the TSM
still provides a sizeable improvement, achieving a 1.29×
improvement on average, peaking at 1.5× for LeNet75 and
Gaussian-8.

Fig. 9 illustrates the Area × Time tradeoff as the bit width
is increased. For latency, the TSM has the lowest Area × Time
compared to the other multipliers. Calculating the Area × Time
with respect to throughput shows that the parallel (pipelined)
multiplier achieves a 1.84×–2.29× performance improvement
over the parallel (combinatorial) multiplier for bit widths 16,
32, and 64. These results are shown in parentheses in the
Area × Time column as well as the pipeline (throughput)
plot in Fig. 9. The TSM still shows favorable results for both
the uniform and Gaussian sets, while outperforming on the
Gaussian-8 and neural network sets.

To the best of our knowledge, there are only three recent
publications in the domain of FPGA microarchitecture multi-
plier optimizations, targeted at SP computation of the Booth
algorithm [12], [13], [16]. All of these works were imple-
mented on 90-nm FPGAs, making a direct comparison difficult
since they were not only slower and higher power consump-
tion due to technology, their architecture was also different,
e.g., they used four-input lookup tables, and performance of
the larger multipliers, such as 32 and 64 bit, were not reported.
A fair comparison is thus impossible but the reported results
are listed at the bottom of Table III, and we note that for
the 16- and 32-bit cases the TSM improved Area × Time
and Area × Time × Power by an order of magnitude. Both
the parallel (combinatorial) and parallel (pipelined) multipliers
are taken from libraries that implement the latest multiplier
optimizations and serve as a good comparison between our
work and the industry standard.
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TABLE III

MULTIPLIER PERFORMANCE METRICS—LATENCY AND THROUGHPUT

Fig. 9. Area × Time for each multiplier as a function of its bit width.

VI. CONCLUSION

In this paper, we presented a TSM, which is divided
into two subcircuits, each operating with a different critical
path. In real time, the performance of this multiplier can be
improved solely on the distribution of the bit representation.
We illustrated for bit widths of 32 and 64, typical compute
sets, such as uniform and Gaussian and neural networks,
can expect substantial improvements of 3× and 3.56× using
standard learning and sparse techniques, respectively. The
cost associated with handling lower bit width representations,
such as Gaussian-8 on a 64-bit multiplier is alleviated and
show up to a 3.64× improvement compared to the typical
parallel multiplier. Future work will focus on techniques
for constructing applications to take full advantage of the
two-speed optimization.
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